Eduardo González-Mora

PhD


Curriculum vitae



Ingeniería en Sistemas Energéticos Sustentables

Facultad de Ingeniería. UAEMéx



A practical upper-bound efficiency model for solar power plants


Journal article


Eduardo González-Mora, Ram Poudel, María Dolores Durán-García
Journal of Non-Equilibrium Thermodynamics, 2023


Cite

Cite

APA   Click to copy
González-Mora, E., Poudel, R., & Durán-García, M. D. (2023). A practical upper-bound efficiency model for solar power plants. Journal of Non-Equilibrium Thermodynamics. https://doi.org/10.1515/jnet-2022-0080


Chicago/Turabian   Click to copy
González-Mora, Eduardo, Ram Poudel, and María Dolores Durán-García. “A Practical Upper-Bound Efficiency Model for Solar Power Plants.” Journal of Non-Equilibrium Thermodynamics (2023).


MLA   Click to copy
González-Mora, Eduardo, et al. “A Practical Upper-Bound Efficiency Model for Solar Power Plants.” Journal of Non-Equilibrium Thermodynamics, Accepted, 2023, doi:10.1515/jnet-2022-0080.


BibTeX   Click to copy

@article{gonz2023a,
  title = {A practical upper-bound efficiency model for solar power plants},
  year = {2023},
  journal = {Journal of Non-Equilibrium Thermodynamics},
  doi = {10.1515/jnet-2022-0080},
  author = {González-Mora, Eduardo and Poudel, Ram and Durán-García, María Dolores},
  howpublished = {Accepted}
}

Abstract

A generalized model for the maximum work rate extractable from the Sun is developed considering a reversible and an endoreversible system to define a more practical upper-bound efficiency for the conversion of solar radiation into work and power. This model is based on a photo-thermal work extractor in communication with a high-temperature radiation reservoir and a low-temperature heat sink. Following the model, a parametric analysis of the concentration acceptance product () and thermal conductance is performed to identify the interdependence of variables for the solar exergy. The results are compared with existing models to provide a practical baseline of work and power extractable from concentrated solar power plants (CSP) technologies. Therefore, it is possible to quantify the irreversibilities of an idealized thermodynamic system operating between the Sun and the absorber (via radiative transfer) and the environment (via convective transfer).


Tools
Translate to